Mark Scheme - PI5.2 Acid-base Equilibria

1 (a) $K_w = [H^+][OH^-]$ (1) Units = mol2 dm-6 (1) [2] In pure water $[H^+] = [OH^-]$ or $[H^+] = \sqrt{1.0 \times 10^{-14}}$ (1) (b) (i) $pH = -\log 10^{-7} = 7$ (1) [2] Final volume of solution is 1000 cm³ so acid has been diluted by a (ii) factor of 100 so final concentration of acid is 0.001 moles acid = $0.1 \times 10 = 0.001$ (1) 1000 $pH = -\log 0.001 = 3$ (1) [2] $1.78 \times 10^{-5} = [H^+] \times 0.02$ (c) (1) 0.01 $[H^+] = 8.90 \times 10^{-6}$ (1) pH = 5.05allow 5 or 5.1 (1) [3] (d) The solution is a buffer (1) Solution contains a large amount of CH3COOH and CH3COO-ions (Accept correct equations) (1) When an acid is added, the CH3COO-ions react with the H+ions, removing them from solution and keeping the pH constant [3] Total [12] 2 (dissociates to) release H⁺ ions [1] (a)

2.5-6.0

(b)

[1]

3 (a) an acid is a proton / H⁺ donor

[1]

(b) pH = -log[H⁺] / negative log of hydrogen ion concentration

[1]

(c) a low pH corresponds to a high concentration of H⁺ (1)

a strong acid is totally dissociated whilst a weak acid is partially dissociated (1)

need to consider concentration (of acid solution) as well as strength of the acid (1)

a concentrated solution of a weak acid could have a lower pH than a dilute solution of a strong acid (1) [4]

QWC Accuracy of spelling, punctuation and grammar

QWC [1]

(d) (i) $K_a = [HCOO^{-}][H^{+}]$ [HCOOH]

[1]

(ii) $1.75 \times 10^{-4} = \frac{x^2}{0.1}$ (1)

$$x = 4.183 \times 10^{-3} (1)$$

$$pH = 2.38(1)$$

[3]

(e) (i) buffer

[1]

[3]

(ii) RCOOH \rightleftharpoons RCOO⁻ + H⁺ and RCOONa \Rightarrow RCOO⁻ + Na⁺ (1)

added H⁺ removed by salt anion/ A⁻+ H⁺ → HA (1)

added OH removed by acid/ OH + HA → A + H₂O (1)

Total [15]

4 (a) Filtration [1] (b) $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ [1] (c) (i) Carbon O.S. at start = +3; Carbon O. S. at end = +4 [1]

(d) Colour change of manganate(VII) is used to indicate the change [1]

 $2MnO_4^- + 16H^+ + 5C_2O_4^{2-} \rightarrow 2Mn^{2+} + 8H_2O + 10CO_2$

(e) Volume of manganate(VII) = 27.92 cm³ (1)

(ii)

Moles manganate = $27.92 \times 0.020 / 1000 = 5.584 \times 10^{-4} \text{ mol (1)}$

Moles oxalate = $5.584 \times 10^{-4} \times 5/2 = 1.396 \times 10^{-3} \text{ mol (1)}$

Concentration = $1.396 \times 10^{-3} / 25 \times 10^{-3} = 0.0558 \text{ mol dm}^{-3}$ (1) [4]

(f) (i)
$$K_a = \frac{[H^+][HCOO^-]}{[HCOOH]}$$
 [1]

(ii) $[H^+]^2 = K_a \times [HCOOH] = 1.8 \times 10^{-4} \times 0.2 = 0.36 \times 10^{-4} \text{ (1)}$ $[H^+] = 6.0 \times 10^{-3} \text{ mol dm}^{-3} \text{ (1)}$ $pH = -log [H^+] = 2.22 \text{ (1)}$ [3]

(iii) A buffer keeps the pH almost constant when small amounts of acid or base are added (1)

 $HCOOH \rightleftharpoons HCOO^- + H^+(1)$

Adding acid shifts the equilibrium to the left which removes H⁺ /
Adding base removes H⁺ shifts equilibrium to right which replaces H⁺ (1)
OR answer in terms of H⁺ reacting with methanoate from sodium methanoate when acid added (1) and methanoic acid replacing H⁺ when base removes H⁺ (1)

MAX 3 [3]

QWC Selection of a form and style of writing appropriate to purpose and to complexity of subject matter [1]

(g) (i) Orange to green [1]

(ii) CrO₄²⁻ (1) Yellow (1) [2]

Total [20]

[1]

- (a) (i) A helium (atom) nucleus / 2 protons and 2 neutrons / 4He²⁺ [1]
 - (ii) b......22 (1) X......Ne (1) [2]
 - (iii) $(4 \times 2.6) = 10.4$ [1]
 - (b) The frequency of the green line at 569 nm is HIGHER, than the frequency of the yellow-orange line at 589 nm. Another line is seen at 424 nm, this is caused by an electronic transition of HIGHER, energy than the line at 569 nm.
 [1]
 - (c) (i) Na_2CO_3 $NaHCO_3$ $2H_2O$ 106 + 84 + 36 (1) \rightarrow 226 [1]

(or by other appropriate method - note mark is for the working)

(ii) Atom economy = $\frac{^{\prime}M_{r} \text{ required product} \times 100}{\text{Total 'M}_{r}' \text{ of the reactants}}$ (1)

$$= \frac{318 \times 100}{452} = 70.4 / 70.35 (\%) (1)$$
 [2]

- (iii) Carbon dioxide is produced (and released into the air) and this contributes to the greenhouse effect / increases acidity of sea (1) It should be trapped / a use found for it. (1) [2]
- (d) (i) Water is acting as a proton donor (1) and this combines with the carbonate ion / CO₃², giving the hydrogencarbonate ion / HCO₃⁻ (1)
 [2]
 - (ii) The pH scale runs from 0-14 / measure of acidity / alkalinity (1) pH <7 acid / >7 alkali (1) acid stronger as pH value decreases / alkali stronger as pH value increases / 11.4 is strong alkali (1)
 [3]

Total [15]